

ChemCatalyst:

Q: Which of the following are isotopes of Cu?

Notes:

• What does $^{59}_{27}Co$ tell you?

A. $_{29}^{63}Cu$ B. $_{79}^{197}Au$ C. $_{28}^{63}Cu$ D. $_{29}^{87}Cu$ E. $_{29}^{34}Cu$ F. $_{29}^{65}Cu$

Answers: A & F (D gives too many neutrons and E gives too few neutrons)

(Co is the element, Cobalt)

-- This represents ONE isotope of Co

-- 59

-<u>27</u>

32 neutrons in this isotope

- What is another way to name this isotope of Cu?
- How are the words "atom", "isotope" & "element" interrelated?

- Cobalt-59 (use the mass #)
- 1. All matter is made up of elements
 - 2. Elements are made up of atoms
 - 3. All atoms of an element are identical, except some atoms of an element have different #'s of neutrons, called <u>isotopes</u>.

LESSON 14

Isotopia Stable and Radioactive **Isotopes**

Name	
Date	Pariad

ChemCatalyst

Which of the following are isotopes of copper, Cu? Explain your reasoning.

A. $^{63}_{29}$ Cu **B.** $^{197}_{79}$ Au **C.** $^{63}_{28}$ Cu **D.** $^{87}_{29}$ Cu **E.** $^{34}_{29}$ Cu **F.** $^{65}_{29}$ Cu

Activity

The chart shows the isotopes that exist for the first six elements. Use your periodic table to fill in the shaded boxes. Then answer the questions about the graph.

- 1. How many isotopes does hydrogen have? How do they differ?
- 2. If you had a sample of beryllium, would all the atoms be identical? What about a sample of lithium? Explain your answers.

3. Next to the chart on the first page, draw a simple atomic model of beryllium, Be.

Part 2: All the Naturally Occurring Isotopes

Look at the Handout: Chart of Naturally Occurring Isotopes.

- 1. Phosphorus has one naturally occurring isotope. Write its name and symbol.
- 2. Which element has the most isotopes? How many does it have?
- 3. Write the isotope name and symbol for the most abundant isotope of nickel.
- **4.** Do you expect to find an atom with 26 protons and mass number 52? Explain your thinking.
- **5.** Imagine that a chemist is trying to establish whether a piece of rock is from a meteorite that fell from outer space. The rock contains more copper-65 atoms than copper-63 atoms. What can you conclude?
- **6.** Where on the periodic table are the majority of radioactive isotopes found? Write the isotope symbol for one example of a radioactive isotope.
- 7. Which elements have isotopes with the same number of protons and neutrons?
- **8. Making Sense** List four types of general information that you can obtain from the isotope graph on the handout.
- **9. If You Finish Early** What do you think nuclear chemists mean when they say that 8, 20, and 50 are magic numbers for isotopes?

Check-in

- 1. Use the chart to determine how many neutrons you would need to make a stable element with 79 protons.
- 2. What element is this? Write its isotope symbol.

Alchemy Unit Isotopia gpb video: Chem Std: 11c

Making Sense

Notes:

 What did you learn about isotopes today?

- Some elements have only one naturally occurring isotope
 - --others have several
- Many atoms have at least 1 neutron for every proton (1:1 ratio)
 - --large atoms have more neutrons than protons (3:2 ratio) → they need more "glue" to hold the repelling protons together *isotope stability is related to its ratio of neutrons to protons

Ex: Hydrogen has 3 isotopes:

Hydrogen-1

Hydrogen-2

Hydrogen-3 ← radioactive

Tritium is rare: about 1 in a billion

- Some isotopes are unstable/radioactive
 --they decay over time (emit particles from the nucleus)
- All isotopes after bismuth (with atomic #84 and up) are radioactive